Profiling the Epigenetic Landscape of Breast Cancer Stem Cells

2010 GSC Retreat
Team - Epitome of Epiphany

Background – Epigenetics

Epigenetics - the study of changes in the regulation of gene activity that are not dependent on DNA sequence

Background – Stem Cells

- Definition of a stem cell
 - 1. Self-renewal the ability to go through numerous cycles of cell division while maintaining an undifferentiated state.
 - 2. High potency the capacity to differentiate into specialized cell types.
- Scale of potency

Totipotent – produce all cells in an organism

Pluripotent – produce almost all cells

Multipotent – produce one family of cells

Unipotent— only produce their own cell type

Background – Cancer Stem Cells (CSCs)

- Self renewal
- CSCs give rise to all cell types found in a particular cancer sample (i.e. heterogeneity)
- Only CSCs form new tumours

Background – Breakthroughs in stem cell research provide insight into cancer stem cells

CSCs are similar to partially reprogrammed somatic cells

Background – Stem cells and differentiated cells show distinct epigenetic signatures

Amabile and Meissner 2009 Trends in Molecular Medicine 15:59-68

Hypothesis

- Differences in the epigenetic landscape between breast CSCs and non-CSCs can be distinguished.
 - CSCs (CD44+/CD24-) vs. non-CSCs (remainder)
- The epigenetic programming acquired by CSCs can be modified toward differentiation, which could be exploited as a cancer-treatment strategy.

Aims

- Profile the differences in the epigenetic landscape between breast CSCs and non-CSCs derived from breast cancer cell lines
- 2. Profile the differences in the epigenetic landscape between breast CSCs, non-CSCs, and matched normal tissue isolated from patient primary tumours
- 3. Show that manipulation of the epigenetic landscape can change the cancer stem cell to a less tumourigenic/differentiated epigenetic state

Cell Lines

Following cell lines were selected based on 3 criteria:

- 1. Population presenting the stem cell markers
- 2. Tumourigenicity
- 3. Current available genomic data.

Cell lines/Criteria	CD44+/CD24-/low	Tumourigenicity	Genomic data					
MDA-MB-231	+++	++	$\sqrt{}$					
HCC1937	++	++	\checkmark					
Hs578T	++	+	V					

$$(+)$$
 15-20% $(++)$ 30-70% $(+++)$ >70%

ChIP-Seq **Ch**romatin Immunoprecipitation and **Sequencing** for histone modifications

MeDIP-Seq Methylated DNA Immunoprecipitation and **Seq**uencing for methylated DNA

MRE-Seq Methylation-sensitive Restriction Enzyme and **Seq**uencing for unmethylated DNA

Peak = putative binding site

Aim 1. Profiling the epigenetic landscape of breast cell line derived CSCs and resulting bulk tumour.

Methods

Aim 2. Profiling the epigenetic landscape of primary breast tumour CSCs and the resulting bulk tumour.

Methods

Aim 3. Manipulation of CSC epigenetic landscape by shRNA

Methods

Strategies and Rationales What epigenetic reprogramming signals can we use?

Downregulation of demethylase by shRNA

- <u>Blockade of AID (activation-induced cytidine deaminase)</u> by shRNA was shown to inhibit reprogramming of induce pluripotent cells (IPSC)
- <u>Blockade of Tet1 by shRNA</u> was shown to inhibit embryonic stem cell programming maintenance.

Downregulation of methylase by shRNA

<u>Blockade of DNMT1 by shRNA</u> has been shown to decrease breast cancer tumorigenicity.

Analysis: What are the recurrent epigenetic changes in CSCs?

Epigenetic changes between CSCs vs. non-CSCs

Goal: Identify recurrent epigenetic changes between the three cell lines/primary tumours

Analysis: Can CSCs be modified toward differentiation in vivo?

Expect to find enrichment for genes with CSC characteristic signatures showing changes during the transition of cells to a more differentiated state

Potential Problems

 Poor engraftment of the CSCs isolated from primary tumours.

Tumour heterogeneity

Genetic mutation

Significance

 CSCs are putatively the source of cancer recurrence and treatment resistance

Provide a reference CSC epigenetic profile

 Understanding the modifications that contribute to CSC pluripotency may lead to the development of new therapies

Timeline (5 years)

Aim	Task	Year 1		Year 2			Year 3			Year 4				Year 5							
		Q 1	Q 2	Q 3	Q 4	Q 1	Q 2	Q 3	Q 4	Q 1	Q 2	Q 3	Q 4	Q 1	Q 2	Q 3	Q 4	Q 1	Q 2	Q 3	Q 4
Aim 1	Profile the differences in the epigenetic landscape between breast cancer stem cells derived from breast cancer cell lines and the resulting bulk tumor, using a mouse xenograft model																				
Aim 2	Profile the differences in the epigenetic landscape between breast cancer stem cells isolated from patient primary tumours, non-CSCs derived from the same tumor and normal tissue.																				→
Aim 3	Show that manipulation of the epigenetic landscape by shRNA treatments of methylation regulating enzymes can change the cancer stem cell to a less tumourigenic/differentiated epigenetic state or vice versa.																				→

Epitome of **Epi**phany Team Members

Mauro Castellarin
Grace Cheng
Malachi Griffith
Cydney Nielsen
Alex Patenaude
Johanna Schuetz
Iran Tavakoli